JONSSON ALGEBRAS IN SUCCESSOR CARDINALS

BY S. SHELAH*

ABSTRACT

We shall show here that in many successor cardinals λ , there is a Jonsson algebra (in other words $Jn(\lambda)$, or λ is not a Jonsson cardinal). In connection with this we show that, e.g., for every ultrafilter D over ω , in $(\omega_{\omega} <)^{\omega}/D$ there is no increasing sequence of length $N_{(2^{\mu}0)^{+}}$. On Jonsson algebras see e.g. [1]; for successor $\lambda^+ = 2^{\lambda}$ there is a Jonsson algebra, $\text{Jn}(\lambda) \Rightarrow \text{Jn}(\lambda^+)$ (due to Chang, Erdös and Hajnal) and even in $2^{\mu} = \mathbf{N}_{\alpha+n}$ ([3]). We give here a method to prove, e.g., $\text{Jn}(\mathbf{N}_{n+1})$ when $2^{n_0} \leq \mathbf{N}_{n+1}$ and $\text{Jn}(2^{n_0})$ when $2^{n_0} = \mathbf{N}_{n+1}$, $\alpha < \omega_1$; and similar results for higher cardinals.

QUESTIONS. (1) Does $Jn(\mathbf{N}_{\omega+1})$ always hold?

- (2) Does Jn(λ^+) always hold, or at least when $(\lambda^+)^{M_0} = \lambda^+$?
- (3) Does always $\mathbf{N}_{\omega+1} \in P$ cf $(\mathbf{N}_n : n \leq \omega)$?

DEFINITION 1. (A) A Jonsson algebra is an algebra M , with countably many operations (finitary, of course), which has no proper subalgebra of the same cardinality. A Jonsson model is a model with countably many relations and operations which has no proper elementary submodel of the same cardinality.

(B) $J_n(\lambda)$, or λ is not a Jonsson cardinal if there is a Jonsson algebra of cardinality λ . This is equivalent to the existence of a Jonsson model (expand by Skolem functions).

CONVENTION 2. (A) We do not distinguish between a model and its universe; and unless stated otherwise a model has only countably many operations and relations.

(B) For simplicity we restrict ourselves to models of the form M_{λ} , where M_{λ}^1 will be $(H(\lambda^*), \in)$ for $\lambda^* > \lambda$ (e.g. $(2^{\lambda})^+$) $(H(\lambda^*)$ is the family of sets whose

[&]quot;The author would like to thank the United States--Israel Binational Science Foundation for partially supporting his research by grant 1110.

Received December 5, 1976 and in revised form May 25, 1977

transitive closure has cardinality $\langle \lambda^* \rangle$; let M_{λ}^2 be an elementary submodel of M^1_λ of cardinality λ , $\lambda + 1 \subseteq M^2_\lambda$, and $M_\lambda = (M^2_\lambda, \in, F)$ where F is a one-to-one function from λ onto M_{λ}^2 . So M will denote some M_{λ} .

Notice that $\text{Jn}(\lambda)$ implies that any M_{λ} is a Jonsson model (proof as for 4A). If there is a Jonsson algebra $\mathfrak{A} = (\lambda, f_i)_{i \in \omega}$ then $\mathfrak{A} \in M_{\lambda}^1$, thus M_{λ}^1 = "there is a Jonsson algebra on λ ". By way of contradiction, assume there is a $N <$ $M_{\lambda} N \neq M_{\lambda} \| N \| = \lambda$. Clearly (since λ is definable in M_{λ} as sup Dom F) $\lambda \in N$ and $N \models$ "there is a Jonsson algebra on λ ". Let \Re be such an algebra but $\mathcal{B} \cap N \leq \mathcal{B}, \mathcal{B} \cap N \neq \mathcal{B}$ (for $\lambda \not\subset N$) and $\|\mathcal{B} \cap N\| = \|\lambda \cap N\| = \lambda$. This is a contradiction to \Re being Jonsson.

DEFINITION 3. (A) For sets S_1, S_2 of cardinals, and a cardinal (or ordinal) μ , $S_1 \rightarrow S_2[\mu]$ means that for every M (as in 2B) and $N \le M$, if

(i) $\mu + 1 \subseteq N$ (for $\mu = \aleph_0$ this is empty),

(ii) for every $\lambda \in S_1, |\lambda \cap N| = \lambda$,

(iii) $S_1 \subseteq N$ (if each $\lambda \in S_1$ is a successor, this follows by (ii)),

 (iv) $S_1, S_2 \in N$,

then for some $\lambda \in S_2$, $|\lambda \cap N| = \lambda$ and $\lambda \in N$. (The interesting case is $\text{Sup } S_1 \geq \text{Sup } S_2 + \mu$.)

(B) When $S_i = \{\lambda\}$ we write λ instead of S_i , and instead of $S_i^1 \cup S_i^2$ we write S^1_i , S^2_i . Note that in 3(A) we can replace S_i by a sequence, and nothing changes.

For Notational simplicity let $\text{Sup } S = \cup \{ \lambda + 1 : \lambda \in S \}.$

OBSERVATION 4. (A) $S_1 \rightarrow S_2[\mu]$ iff (*) iff (**), where

(*) There is a model N_0 , Sup $S_1 \subseteq N_0$, N_0 has $\leq |\mu|$ operations and relations and if $N < N_0$, $|N \cap \lambda| = \lambda, \lambda \in N$ for each $\lambda \in S_1$ then $|N \cap \lambda| = \lambda, \lambda \in N$ for some $\lambda \in S_2$.

(**) There is a model N_0 as in (*) with universe Sup S_1 .

(B) In Definition 3A(i) we can demand only $\mu \subseteq N$ or even $|\mu| \subseteq N$ for μ ordinal.

(C) In Definition 3A we can demand M to vary only on $M_{\lambda} < H(\lambda^*)$ where λ = Sup S₁ and λ ^{*} > λ is a constant, and demand some specific elements $\in M_{\lambda}$.

PROOF. $S_1 \rightarrow S_2[\mu] \Rightarrow (*)$: take $\lambda = \text{Sup } S_1, N_0 = (M_\lambda, S_1, S_2, i)_{i \leq \mu}$.

(*) \Rightarrow (**): take N₀ as in (*). Since any N₁ < N₀ s.t. Sup $S_1 \subseteq N_1$ satisfies (*) we can assume $||N_0|| = \text{Sup } S_1$. Add Skolem functions to N_0 and add a name to each formula, getting a model N_1 satisfying (*). Take $N_2 = N_1$ Sup S_1 . We show N_2 satisfies (**). Let $N_2' < N_2$ such that $(\forall \lambda \in S_1)$ ($\lambda \in N_2' \wedge \lambda \cap N_2' = \lambda$); take N'_{0} —the Skolem closure of N'_{2} in N_{0} . By (*) for N_{0} there is $\lambda \in S_{2}$ s.t. $\lambda \in N'_{0}$ and

 $|\lambda \cap N'_0| = \lambda$. Since $|N'_0| \cap \text{Sup } S_1 = |N'_2|$ we have $\lambda \in S_2$ s.t. $\lambda \in N'_2$ and $|\lambda \cap N'_2| = \lambda$.

 $(**) \Rightarrow S_1 \rightarrow S_2[\mu]$. Suppose N_0 is as in $(**)$, and with minimal μ (for the given S_1, S_2 ; hence $\mu \in M_\lambda$. Suppose $N \lt M_\lambda$, as in 3(A). Now $N_0 \in M_\lambda^1$, but as $M_{\lambda}^2 < M_{\lambda}^1$, w.l.o.g. $N_0 \in M_{\lambda}^2$, and even $N_0 \in N$. So N_0^* , the submodel of N_0 with universe $N_0 \cap N = \{a : N \models "a \in N_0"\}$, has universe $N \cap \text{Sup } S_1$ and $N_0^* \lt N_0$.

By the hypothesis of 3(A), the hypothesis of (*) holds, so for some $\lambda \in S_2$, $\lambda \cap N_0^*$ = $\lambda \in N_0^*$ hence $|\lambda \cap N| = \lambda \in N$, so we finish.

(B), (C) Easy from (A).

The basis of our proof is the following

OBSERVATION 5. (A) If $\lambda \to \mu^+[\mathbf{N}_0]$ for every $\mu < \lambda$, then $\text{Jn}(\lambda)$.

(B) If $\mathbf{N}_{\alpha} \to \mu^* [\mu]$ for every $\mu < \mathbf{N}_{\alpha}$ and $\alpha \subseteq N < M_{\mathbf{N}_{\alpha}} || N || = \mathbf{N}_{\alpha}$ then $N = M_{\rm Mpc}$.

(C) If $N < M_\lambda, \|N\| = \lambda$, and for each $\mu \in N, \mu < \lambda, |N \cap \mu^+| = \mu^+$ then $N = M_{\lambda}$.

(D) If $\text{Jn}(\lambda)$, then $\lambda \to \kappa[\aleph_0]$ for every $\kappa \leq \lambda$.

PROOF. (A) By (C); let $N < M$, $||N|| = \lambda$, now $\mu \in N$ implies $\mu^+ \in N$, so by a hypothesis $|N \cap \mu^+| = \mu^+$.

(B) Like (C), as for $\mu < \lambda$, $\mu = \mathbf{N}_{\beta}$ for some $\beta < \alpha$ hence $\mu \in \mathbb{N}$.

(C) Because of the function F it suffices to prove $\lambda \subseteq N$, and we know $|N \cap \lambda| = \lambda$.

Let μ be a maximal cardinality for which $\mu \subseteq N$. If $\mu = \lambda$ we finish, and if $\mu \in N$ then by a hypothesis $|N \cap \mu^+| = \mu^+$, but then $\mu^+ \subseteq N$ (there is $f = f^* \in N$, such that for every $\beta \leq \mu^+, x \mapsto f(\beta, x)$ is a map from μ onto β ; so for each $\alpha < \mu^+$, there is $\beta \in N$, $\alpha < \beta < \mu^+$, so for some $\gamma < \mu$, $f(\beta, \gamma) = \alpha$, hence $\alpha \in N$). So $\mu \notin N$. Choose a minimal $\alpha, \mu \leq \alpha \in N$; as $|\alpha| \in N$, α is a cardinal. Clearly $\alpha < \lambda$ (as $||N|| = \lambda$, and by F) so $|\alpha|^+ \in N$, hence $|N \cap |\alpha|^+| =$ $\alpha |_{\alpha}^+$, so for some $\gamma \in N$, $\alpha < \gamma < |\alpha|^+$, $|N \cap \gamma| = |\alpha| > \mu$, using $f^{|\alpha|}(\gamma, x)$ we get a contradiction.

(D) By 4(*).

LEMMA 6. (A) If $S_0 \rightarrow S_1[\mu]$, and for each $\kappa \in S_1$, S_0 , $\kappa \rightarrow S_2[\mu]$ then $S_0 \rightarrow S_2[\mu]$.

(B) If λ_i , $(i \leq \alpha)$ is an increasing sequence of cardinals, and $\lambda_i \rightarrow {\lambda_i : j < i}$ [μ] *then* $\lambda_{\alpha} \rightarrow \lambda_{0}[\mu]$ *(we can replace the assumption by : for every i for some nonempty* $S_i \subseteq {\lambda_i : j < i}, \lambda_i \rightarrow S_i[\mu]).$

(C) The relation $S_1 \rightarrow S_2[\mu]$ is preserved under increasing S_1, S_2 and μ .

PROOF. (A) By 4(*) there is a model on $\lambda = \text{Sup } S_0$ with $\leq \mu$ relations demonstrating that $S_0 \rightarrow S_1[\mu]$. Add to this model μ relations demonstrating for every $\kappa \in S_1: S_0, \kappa \to S_2[\mu]$. The resulting model shows $S_0 \to S_2[\mu]$.

(B), (C) Similar proofs.

By 5 and 6(B), in order to prove the existence of Jonsson algebras it suffices to prove enough cases of the form $\lambda \rightarrow S[\mathbf{N}_0]$.

LEMMA 7. (A) $\lambda^+ \rightarrow \lambda [\mathbf{N}_0]$ *(hence by 6(A)* $\mathbf{N}_{n+n} \rightarrow \mathbf{N}_n[\mathbf{N}_0]$ *)*. **(B)** $\lambda \rightarrow cf \lambda [\aleph_0]$. (C) $2^{\lambda} \rightarrow \lambda [\mathbf{N}_0]$ when $2^{\mu} < 2^{\lambda}$ for every $\mu < \lambda$. (D) $\lambda \rightarrow {\lambda_i : i < \delta \{ \delta \} \text{ if } \lambda_i < \lambda, \lambda \in P \text{cf}(\lambda_i : i < \delta) \text{ (see below). If}}$ $\lambda \in P$ Sc_D $\langle \lambda_i : i < \delta \rangle$, we can strengthen the demand in 3(A) to $\{i : |N \cap \lambda_i| \neq \emptyset\}$ mod D.

DEFINITION 8. (A) $\lambda \in P$ Sc_D $\overline{\lambda}$ (λ is a possible scale for $\overline{\lambda}$), where $\overline{\lambda}$ = $(\lambda_i : i < \delta), D$ a filter over $\delta, D \supseteq D(\delta) = \{A \subseteq \delta : \delta - A \text{ bounded}\}, \text{ if } \lambda, \lambda_i \text{ are }$ regular cardinals or 1 and there are functions $f_{\alpha}(\alpha < \lambda)$ exemplifying it, i.e.

- (a) $f_{\alpha}(i) < \lambda_i$ for $i < \delta$, and Dom $f_{\alpha} = \delta$ (that is $f_{\alpha} \in \prod_{i < \delta} \lambda_i$),
- (b) $f_{\alpha} \leq_{D} f_{\beta}$ for $\alpha < \beta$ (this means that $\{i : f_{\alpha}(i) \leq f_{\beta}(i) \} \in D$),
- (c) we cannot define f_{λ} satisfying (a) and (b).
- (B) $\lambda \in P \text{ cf } \lambda$ iff $\lambda \in P \text{ Sc}_D \overline{\lambda}$ for some ultrafilter D over δ .
- (C) $\lambda \in P$ Sc $\overline{\lambda}$ if $\lambda \in P$ Sc_{D(8)} $\overline{\lambda}$

(D) $\overline{\lambda}$ is D trivial if $\{i: \lambda_i = 1\} \in D$; we always assume $\overline{\lambda}$ is not D-trivial.

OBSERVATION 9. (A) If $\lambda \in P$ Sc_p $\overline{\lambda}$, $\overline{\lambda} = \langle \lambda_i : i \leq \delta \rangle$, $2^{|\delta|} \leq \lambda$, then $\lambda \in P$ cf $\overline{\lambda}$. (B) $\lambda \in P$ Sc_D $\langle \lambda_i : i < \delta \rangle$ is equivalent to $\lambda = \text{cf}[\prod_{i < \delta} \lambda_i/D]$, for D an ultrafilter.

(C) Suppose $h: \delta^1 \rightarrow \delta^2, h_1: \delta^2 \rightarrow \delta^1, D_t$ a filter over δ' ,

$$
\{i < \delta^1: \lambda_i \geq \mu_{h(i)}\} \in D_1, A \in D_2 \Rightarrow \{i: h(i) \in A\} \in D_1
$$

$$
\{j: hh_1(j)=j, \lambda_{h_1(j)}=\mu_j\}\in D_2
$$

and $\delta^2 - A \notin D_2 \Rightarrow \delta^1 - \{h_1(j): j \in A\} \notin D_1$. Then $\mu \in P$ Sc_D $\langle \mu_j : j \leq \delta^2 \rangle$ implies $\mu \in P$ Sc_{D1}($\lambda_i : i < \delta^1$).

(D) $\lambda \rightarrow {\lambda_i : i < \delta} {\delta}$ if $\lambda \in P \text{Sc}_D \langle \lambda_i : i < \delta \rangle$.

PROOF OF LEMMA 7. (A), (B), (C). Immediate.

(D) Let M, N be as in Definition 3 (so λ , $\{\lambda_i : i < \delta\} \in N$, $\delta + 1 \subseteq N$). W.l.o.g. $\langle \lambda_i : i \leq \delta \rangle \in N$, $D \in N$ (by 4C); so there is $\langle f_{\alpha} : \alpha \leq \lambda \rangle \in N$ exemplifying $\lambda \in P$ Sc_p $\langle \lambda_i : i < \delta \rangle$. As $\delta + 1 \subseteq N$, $\lambda_i \in N$ for each i. If for each $i | N \cap \lambda_i | < \lambda_i$, then $A_i = \{f_\alpha(i): \alpha \in N \cap \lambda\}$ is a subset of λ_i of cardinality $\langle \lambda_i \rangle$, so by λ_i 's regularity it has an upper bound $\langle \lambda_i \rangle$ which we call $f_{\lambda}(\alpha)$. It follows that for $\alpha \in N f_a \leq_{D(\delta)} f_\lambda$ hence $f_\alpha \leq_{D} f_\lambda$: as $|N \cap \lambda| = \lambda$, and \leq_{D} is transitive $f_\alpha \leq_{D} f_\lambda$ for each $\alpha < \lambda$; a contradiction.

Now we shall prove some cases of $\lambda \in P$ Sc λ .

LEMMA 10. (A) Let λ_i ($i < \delta$) be increasing, $\delta < \lambda_* = \sum_{i < \delta} \lambda_i$, each λ_i a *successor (at least for i limit or for an unbounded set of i's), then for any* $f_{\alpha} \in \Pi_{i < \delta} \lambda_i$ $(\alpha < \lambda_*)$ there is an upper bound in $\Pi_{i < \delta} \lambda_i/D(\delta)$. Hence $\lambda \in$ $P \text{cf}_D \langle \lambda_i : i \leq \delta \rangle$ *implies* $\lambda > \lambda_*$.

(B) $\lambda \in P \text{cf}_D \langle \lambda_i : i \leq \delta \rangle$ *implies* $\lambda \leq \prod_{i \leq \delta} \lambda_i$ (as cardinals).

(C) For every $\overline{\lambda}$, D, for some λ , $\lambda \in P$ Sc_p $\langle \lambda_i : i < \delta \rangle$.

(D) If $|\Pi_{i\leq \delta} \lambda_i/D| = \lambda_*^*$, $D \supseteq D(\delta)$ and the assumption of (A) holds then $\lambda_*^+ \in P$ Sc_D $\overline{\lambda}$.

PROOF. Immediate (in (A) choose f such that $|\alpha|^+ < \lambda_i$ implies $f_\alpha(i) < f(i)$).

LEMMA 11. *Suppose* $\overline{\lambda} = \langle \lambda_i : i \leq \kappa \rangle$, κ regular $\langle \lambda_* = \sum_{i \leq \kappa} \lambda_i, \lambda_i$ is increasing. (A) If $\lambda \in P$ Sc_D $\overline{\lambda}$, $\lambda_* < \mu < \lambda$, μ regular, D \aleph_1 -complete or $2^* < \mu$ then $\mu \in P \, \text{Sc}_{D} \langle \lambda' ; i \lt \kappa \rangle$ for some $\lambda' \leq \lambda_{i}$, $\langle \lambda' ; i \lt \kappa \rangle$ is not D-trivial.

(B) In (A), instead of $\lambda \in P \, Sc_D \overline{\lambda}$ it suffices to assume: in $\Pi_{i \leq \kappa} \lambda_i/D$ there is a $\langle \zeta_p$ -increasing sequence of length μ (or even $\leq p$ -increasing, if it is not eventually *constant by* $=_{D}$ *).*

(C) *Note that in (A) and (B) if* $\lambda_i^* < \lambda_* \leq \mu$ (for every *i*) then $\sum_{i \leq \kappa} \lambda_i^* = \lambda_*$.

(D) If $\kappa > N_0$ or $2^{\kappa_0} \leq \lambda_*$ then $\mu = \lambda_*^*$ satisfies the requirement on μ in (A) for $D = D(\delta)$. (In the first case D is \aleph_1 -complete and in the second $2^* < \mu$.)

PROOF. (A) follows from (B).

(B) Let f_{α} ($\alpha < \mu$) be \lt_{D} -increasing (in $\Pi_{i \lt k} \lambda_{i}/D$) s.t. ($\forall \alpha < \mu$) ($\exists \beta < \mu$) $(\alpha < \beta \land \neg f_{\alpha} = \neg f_{\beta})$. If they would exemplify $\mu \in P \text{Sc}_{D} \overline{\lambda}$, we finish. Otherwise we shall show that

(*) there is $f \in \prod_{i \leq \kappa} \lambda_i/D$ such that $f_{\alpha} \leq_{D} f$, for $\alpha \leq \mu$, but for no g is $f_{\alpha} \leq_{\text{D}} g \leq_{\text{D}} f$ for every $\alpha \leq \mu$.

Now (*) is sufficient, for let $\lambda_i = cf f(i), A_i \subseteq f(i)$ a close unbounded set of order-type $cf(i)$, $A_i = \{\alpha(i,j): j \leq \lambda'\}\ (\alpha(i,j))$ increasing with j) (if $f(i)$ is a successor ordinal $\lambda'_i = 1$).

Let $f'_{\alpha}(i) = \min\{j : \alpha(i,j) \geq f_{\alpha}(i)\}\$, then $f'_{\alpha} (\alpha < \mu)$ exemplify $\mu \in$ $PSc_D(\lambda'_i: i < \kappa)$, $\langle \lambda'_i: i < \kappa \rangle$ is not D-trivial, as otherwise we find g contradicting (*).

Let us prove (*).

Case (i). *D* is N_1 -complete.

In this case \leq_D is well-founded, as we assume there is $f \in \prod_{i \leq k} \lambda_i/D$, $f_{\alpha} \leq_D f$ for every $\alpha < \mu$, there is one as required.

Case (ii). $2^k < \mu$.

It is well known that there is no decreasing sequence of length $(2^*)^+$ in $\leq_{\mathcal{D}}$. So define by induction on $\gamma f^{\gamma} \in \Pi_{1 \leq \kappa} \lambda_{i}$, such that $\beta \leq \gamma \Rightarrow f^{\gamma} \leq_{D} f^{\beta}$, and $\alpha \leq \mu \Rightarrow$ $f_a \leq_D f^{\gamma}$. Now f^{δ} exists by an assumption in the beginning of the proof. So there is a first γ_0 for which f^{γ_0} is not defined. We shall now prove γ_0 is a successor so f^{γ_0-1} is as required. As mentioned above $\gamma_0 < (2^*)^*$. Let $P_i = \{f^*(i); \gamma < \gamma_0\} \subseteq \lambda_i$, so $P_i|\leq 2^{\kappa}$. Let $(\prod_{i\leq \kappa}\lambda_i/D,\leq P)=\prod_i(\lambda_i,\leq_D,P_i)/D$ so $|P|\leq \prod_{i\leq \kappa}|P_i|\leq 2^{\kappa}$. Now $2^k < \mu$, μ regular so for some $\alpha_0 < \mu$, for every $a \in P$, and $\alpha_0 \le \alpha < \mu$, $f_{\alpha_0} \le p$, $a \Leftrightarrow$ $f_a \leq_D a$. Now

$$
(\lambda_i, \leq, P_i) \vDash (\forall x)[(\exists z)(P(z) \land x \leq z) \rightarrow (\exists y)[(P(y) \land x \leq y) \land (\forall z)(P(z) \land x \leq z \rightarrow y \leq z)]].
$$

This is a Horn sentence, so $(\prod_{i<\kappa}\lambda_i/D, \leq_D, P)$ satisfies it, so taking f_{α_0} for x the antecedent holds ($z = f^0$) so we get f for y. So $f_{\alpha} \leq_{\text{D}} f$ hence for every $\alpha f_{\alpha} \leq_{\text{D}} f$ by the choice of $f_{\alpha i}$; also $f \leq_D f^{\gamma}$ as $(\prod_{i<\kappa} \lambda_i/D, \leq_D, P) \models P(f^{\gamma}) \wedge f_{\alpha(0)} \leq_D f^{\gamma}$. Clearly f is as required.

(C), (D) left to the reader.

CONCLUSION 12. For N_8 singular, D an ultrafilter over cf δ , in $(\omega_8, \langle \cdot \rangle^{ct})^5/D$ there is no increasing sequence of length N_{γ} where $\gamma = (|\delta|^{cf})/D)^{+}$.

PROOF. Otherwise for every $\beta < \gamma, \beta$ successor, $\beta > \delta$ there are $\alpha(\beta, i) < \delta$ $(i < cf \delta)$ such that $cf[\prod_{i < \delta}(\omega_{\alpha(\beta,i)}, <)/D] = \aleph_{\beta}$ (by 11A, 9A) but the number of possible $\langle \alpha(\beta, i): i \leq cf \delta \rangle$ is $\leq |\delta|^{ct} D$, contradiction.

This has relation to Galvin and Hajnal [2], but 12 is applicable when $cf \delta = \aleph_0$ too. In fact

CLAIM 13. If N_5 is singular, $cf \delta > N_0, \mu \le N_5^{cf \delta}$ regular, $(\forall \alpha < \delta)(\forall k < c \in \delta) \aleph_{\alpha}^{k} < \aleph_{\delta}$ then for some $\alpha(i) < \delta, \mu \in \text{PSc}(\aleph_{\alpha(i)}; i < \delta).$

If $\beta(i)$ (i < cf δ) are increasing and continuous with limit δ , for $\mu = N_{\delta+1}$ we can choose $\alpha(i) = \beta(i) + 1$ provided that $\Pi_{i \leq j} \mathbf{N}_{\alpha(i)} \leq \mathbf{N}_{\alpha(j)}$.

We can now apply our theorems.

CONCLUSIONS 14. (A) $\text{Jn}(\mathbf{N}_{\omega+1})$ if $2^{\mathbf{N}_0} \leq \mathbf{N}_{\omega+1}$.

(B) If $(\forall \lambda)$ (cf $\lambda > \aleph_0 \rightarrow \lambda^{\aleph_0} = \lambda$) and there is no weakly inaccessible cardinal then $(\forall \lambda)$ Jn(λ^+).

PROOF. (A) First note that for any non-principal ultrafilter D over ω , $\mathbf{X}_{\omega+1} \in P$ Sc_D $\langle \mathbf{N}_{n(k)}: k < \omega \rangle$ (for some $n(k) < \omega$) (if $2^{\mathbf{x}_0} = \mathbf{N}_{\omega+1}$, by 10(D), otherwise for some λ , $\lambda \in P$ Sc_p $\langle \mathbf{N}_n : n \leq \omega \rangle$; by 10(A) $\lambda > \mathbf{N}_{\omega}$, by 11A $\mathbf{N}_{\omega+1} \in$ $PSc_{\rho} \langle \mathbf{N}_{n(k)}: k \leq \omega \rangle$ for some $n(k)$). For a given $m \leq \omega$, we can assume $n(k) \geq m$ (as $\{k: n(k) < m\} \not\in D$), by 7(D) $\mathcal{R}_{\omega+1} \rightarrow {\mathcal{R}_{n(k)}}: k < \omega\}[\mathcal{R}_0]$. As $\mathbf{N}_n \to \mathbf{N}_m[\mathbf{N}_0]$ for $n \ge m$ (by 7A), by 6(A) $\mathbf{N}_{\omega+1} \to \mathbf{N}_m[\mathbf{N}_0]$. So by 5(A) Jn $(\mathbf{N}_{\omega+1})$.

(B) Left to the reader.

CONCLUSION 15. Jn (2^{\aleph_0}) if $2^{\aleph_0} = \aleph_{\alpha+1}$, $\alpha < \omega_1$.

PROOF. Let $\beta \leq \alpha$ and we shall prove $\mathbf{N}_{\alpha+1} \rightarrow \mathbf{N}_{\beta+1}[\mathbf{N}_0]$ (this is sufficient by 5A). We define increasing $\beta(i) \leq \alpha + 1$, and $S_i \subseteq \{N_{\beta(i)}: j < i\}, \beta(0) = \beta + 1$, each $\beta(i)$ is a successor, to satisfy 6(B). For $i=0, \beta(0)=\beta+1, \beta(i+1)=$ $f(x_i) + 1$, $S_{i+1} = {\{N_{\beta(i)}\}}$. For i limit of cofinality ω let $i_n < i$ be increasing with limit $i, S_i = \{ \mathbf{N}_{\beta(i_n)}: n < \omega \}$, and we choose a successor $\beta(i) > \bigcup_{n} \beta(i_n)$, $\beta(i) \leq \alpha + 1$ such that $\mathbf{N}_{\theta(i)} \to S_i[\mathbf{N}_0]$; we can do it by 10C and 10A, B. By 6B $\mathbf{N}_{\alpha+1} \to \mathbf{N}_{\theta+1}[\mathbf{N}_0]$, thus we finish.

LEMMA 16. If $\lambda \to \mu^+[\mathbf{N}_0]$ for every $\mu, \lambda_0 \leq \mu < \lambda$ and $N < M_{\lambda}$, $||N|| = \lambda$ then: *(A) If* $\lambda_0 \le \mu \le \lambda$ *then* $\mu \in N$ *and* $|\mu \cap N| = \mu$ *(so* $\lambda \rightarrow \mu \cdot N$ *).* (B) *For every* $a \in \lambda$ *there is b such that* $a \in b \in N$ *, and* $|b| < \lambda_0$ *.* (C) If $\lambda^{\lambda_0} = \lambda$ then $\text{Jn}(\lambda)$.

PROOF. (A) Like 5(A) (notice we can assume λ_0 is minimal with such properties, hence definable in M_{λ}).

(B) Let μ be a minimal cardinal such that for some $b_{\mu}, |b_{\mu}| \leq \mu, a \in b_{\mu} \in N$. Now $\mu \leq \lambda$ as we can choose $b_{\lambda} = \lambda$.

Let us prove $\mu < \lambda_0$; otherwise as $b_{\mu} \in N$ also $\mu = |b_{\mu}| \in N$, so in N there is a function f from μ onto b_{μ} . We know by 15(A) that $|\mu \cap N| = \mu$, so $N \cap \mu$ is unbounded in μ , so there is $\alpha \leq \mu, \alpha \in \mathbb{N}$ such that $a \in \{f(\beta); \beta \leq \alpha\}$. Now $b' = \{f(\beta): \beta \leq \alpha\} \in N$ contradicts μ 's minimality.

(C) It suffices to prove $\lambda \subseteq N$, so let $a \in \lambda$. By 15(B) there is $b \in N$, $|b| \le$ $\lambda_0, a \in b$, and as $\lambda_0 \in \mathbb{N}$ we can assume $|b| = \lambda_0$. As $|N \cap \lambda| = \lambda$ there is a set $A \subseteq \lambda \cap N, |A| = \lambda_0$ and necessarily $A \in M_\lambda^1$ but possibly $A \not\in N$. Let $F^* \in N$ be a function from λ onto $\{B \subseteq \lambda : |B| = \lambda_0\}$; so for some $i, j < \lambda, F^*(i) =$ $A, F^*(j) = b$. By 15(A) there is $C \in N, |C| \leq \lambda_0$ such that $i, j \in C$. ${F^*(\alpha) : \alpha \in C}$ is a family of $\leq \lambda_0$ sets each of power exactly λ_0 . So there is a

function $g \in N$, Dom $g = \bigcup_{\alpha \in C} F^*(\alpha)$, such that for every $\alpha \in C$, $\{g(x): x \in$ $F^*(\alpha)$ = Dom g (clearly $|$ Dom g $| = \lambda_0$).

This holds for $\alpha = i$, but $g \in N$, $A = F^*(i) \subseteq N$; so Dom $g \subseteq N$, but $a \in b =$ $F^*(j), j \in C$ so $a \in N$.

CONCLUSION 17. Suppose $2^{\kappa_{\alpha}} = \mathbf{N}_{\alpha+\gamma+1}$, then $\text{J}_n(2^{\kappa_{\alpha}})$ if (A) or (B) or (C): (A) $\gamma < \omega_1$, (B) $2^{\kappa_{\alpha}} \rightarrow \mu [\kappa_0]$ for every $\mu \leq |\gamma|$, (C) $\beta < \alpha \Rightarrow 2^{\kappa_{\beta}} < 2^{\kappa_{\alpha}},$ and $J_n(\aleph_{\alpha})$ and $\gamma < \aleph_{\alpha+1}$.

PROOF. Similar to 14.

REFERENCES

1. C. C. Chang and H. J. Keisler, *Model Theory,* North Holland Publ. Co., Amsterdam, 1973.

2. F. Calvin and A. Hajnal, *lnequalities for cardinal powers,* Ann. of Math. 101 (1975), 489-491.

3. S. Shelah, *Notes in combinatorial set theory,* Israel J. Math. 14 (1973), 262-277.

INSTITUTE OF MATHEMATICS

THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM, ISRAEL